

A single equation model for Tear Breakup (TBU) RJ Braun¹, A Manchel¹, R Luke¹, CG Begley² ¹Mathematical Sciences; U of Delaware, Newark, DE USA ²School of Optometry, Indiana U, Bloomington IN USA

INTRODUCTION

Simplified mathematical models for TBU dynamics and its fluorescent (FL) imaging are developed. This new ODE model captures some essential dynamics of some common types of TBU [1,2,3]. Etiologies of TBU include:

- 1. Type I: evaporation driven (Figure 1a) [1,4,5]
- 2. Type: II divergent flow driven (Figure 1b) with strength *a*
- 3. Type III: a mix of type I and type II.

METHOD

The single ODE for thickness h(t) below is solved numerically in Matlab. With h(t), we can compute osmolarity c(t), fluorescein concentration f(t), and intensity I(t).

RESULTS

Type I: c and $f \nearrow$ as $h \searrow$; osmosis stops thinning [1]. I is constant if f is dilute, $I \searrow$ if self-quenching. [4,5,6]

Type II: (New) $h \searrow$ from flow only; c and f <u>remain constant</u>. $I \searrow$ from thinning due to flow only. [4,6]

Type III: (New) Similar to type I early on but like type II later.

Figure 2: $J_e = 1$ or 0, a = 1 or 0.

(a) h(t). (b) c(t) or $f(t)/f_0$.

(c) I(t) with initial f as twice the critical concentration f_{cr} .

Evap+flow is faster than either alone.

Divergent flow (u = ax)

Conclusions:

A single equation can capture essential features of TBU from evaporation or divergent flow

This model is useful for education and for finding tear film and TBU parameters.

http://mathandmedicine.org http://www.math.udel.edu/~braun/eyes.html rjbraun@udel.edu

References

- . RJ Braun et al, Dynamics and Function of the Tear Film in Relation to the Blink Cycle. Prog. Retin. Eye Res. 2015, 45:132-164.
- *Clinical Perspectives*. London: Future Med., 2013:96–108.
- 3. L Zhong et al, Dynamics of Fluorescent Imaging for Rapid Tear Thinning, Bull. Math. Biol. 2019, 81:39–80.
- 4. WR Webber et al, Continuous fluorophotometric method of measuring tear turnover rate in humans and analysis of factors affecting accuracy. Med Biol Eng Comput. 1986, 24:386-392.
- 5. JJ Nichols et al, The Use of Fluorescent Quenching in Studying the Contribution of Evaporation to Tear Thinning. IOVS 2012, 53:5426-5432.
- 6. RJ Braun et al, A Model for Tear Film Thinning With Osmolarity and Fluorescein, IOVS 2014, 55:1133-1142.
- 7. RJ Braun et al, On tear film breakup (TBU): dynamics and imaging. *Math. Med. Biol.* 2018, 35:145-180.
- 8. CC Peng et al, Evaporation-driven instability of the precorneal tear film. Adv. Coll. Interface Sci 2014, 206:250–264.

Supported by NSF DMS 1412085

2. N Yokoi and G Georgiev, Tear-film-oriented diagnosis and therapy for dry eye. In: N Yokoi, ed. Dry Eye Syndrome: Basic and

BONUS: OPTIONAL DETAILS

I(t) for very dilute and somewhat dilute cases:

10-1

Notes:

- - [1,6,7]:
- this model.

Note how I(t) changes much less for evaporative thinning! [4,6]

Summarizing results by plotting *I* vs *f*, as in [6]:

(i) The divergent flow's cause is not specified; it could be from dewetting [2] or lipid spreading [3]. The simple flow here is extensional (an idealization).

(ii) The variables have been normalized. J_e is normalized with the thinning rate. h is normalized with initial thickness (3.5 μ m). c is normalized with the isotonic values (300 mOsM). f is normalized with the critical fluorescein concentration $(f_{cr} = 0.2\%)$ [4,5].

(iii) The intensity is computed as in [4] and subsequent papers $1-e^{-\varphi hf}$

$$= I_0 \frac{1}{1+f^2} \qquad (\varphi, I_0 \text{ are constants})$$

(iv) Not all aspects of TBU, e.g., healing flow [8], are captured by